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Motivation

1. Lack of official orthographic system for many languages in the
world

2. Lack of lexical-level and word-level transcriptions for training
ASR systems for majority of existing languages, e.g., Mboshi

3. Link between low-resource speech learning and early language
acquisition process: Information sources besides speech (e.g.,
vision and taste)?
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Multimodal Word Discovery

I Inputs:

1. x1, . . . , xTx , x ∈ X : phone sequences that the infant hears
2. y1, . . . , yTy ,Ty < Tx , y ∈ Y ∪ {NULL}: a set of image

concepts that the infant sees

I Output:

1. Alignment matrix: word unit = consecutive alignments to the
same concept

A ∈ [0, 1]Tx×Ty = [a>1 , . . . , a
>
Tx

]> = [ã1 . . . ãTy ]

I Assumptions:

1. One concept per phone:
∑Ty

i=0 ati = 1, t = 1, . . . ,Tx

2. Unaligned phones: at0 = 1
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SMT vs NMT

I Statistical Machine Translation (SMT): first introduced by
Brown et. al. 1993 [1]

1. Learning goal: p(x|y) =
∑

A∈{0,1}Ty×Tx p(A|y)p(x|y,A)

2. Inference: EM algorithm, iteratively computing p(xt |yi ) in
terms of the expected counts:

〈c(xt |yi ; x, y)〉 := EA[δi(t)i |x, y]

.
3. Output: hard alignment i(t) := arg maxi p(ati = 1|x, y)

I Neural Machine Translation (NMT) with attention:
introduced by Bahdanau et. al. 2014 [2]:

1. Learning goal: p(y|x) ≈ p(y|x,A∗) (dominant path
assumption)

2. Inference: backpropagation + batched gradient descent
3. Output: soft alignment αti



Models: Machine Translation



NMT Attention Mechanism

1. Normalize-over-time model
(Bahdanau et. al., [2]):

a∗it := αit =
exp(ei (h(xt), si−1)/T )∑Tx
j=1 exp(ej(h(xt), sj−1)/T )

2. Normalize-over-concept
model:

a∗it := αit =
exp(e(h(xt), yi )/T )∑Ty

j=1 exp(e(h(xt), yj)/T )
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Dataset Extraction

1. Raw data: Flickr8k and Flickr30k with object bounding boxes
and phrase-level boundaries; English as “simulated”
low-resourced language

2. Image concept extraction: merge similar noun phrases
Flickr30kEntities using Wordnet synsets and select concepts
with frequency > 10

3. Utterances selection: captions with all image labels having
frequencies > 10, ≈8000 captions in total

4. Caption transcription: transcribe text into phone sequence via
CMU dictionary

5. Dataset split: same test set as in (Karpathy 2014)



Model parameters

I SMT: initialized counts with indicator for co-occurences

I NMT: written with XNMT toolkit [3]; 512-dimensional
embedding layer, 512-dimensional one-layer BLSTM encoder
and LSTM decoder, 512-dimensional fully-connected
attention; 0.5 dropout



Results

SMT
NMT NMT

(norm. over (norm. over
concepts) time)

Word-IoU 6.00 46.0 21.0
Accuracy 43.8 23.0 41.5

Recall 52.9 18.0 29.2
Precision 46.7 12.1 33.0

F-Measure 49.6 14.5 31.0

Recall@1 Recall@5 Recall@10

SMT 9.42% 21.1% 29.1%
Harwath&Glass [4] - - 17.9%

Karpathy [5] 10.3% 31.4% 42.5%



Analysis - ROC Curve

I ROC curve: visualize tradeoff between false positive and true
positive rate for one-versus-all classification of concepts

I Rougher transition from SMT; higher variances from NMT

Figure: ROC plot for SMT Figure: ROC plot for NMT



Analysis - Soft Alignment Plots
I Soft alignment matrix: A Tx × Ty matrix with each entry as

p(ati = 1|x, y) for SMT and attention weights for NMT
I “A woman is sitting at a desk near to a window that has a

huge picture of a hand painted on it”

Figure: Left: SMT, Middle: normalized-over-concept, Right:
normalized-over-time



Conclusion and Future Works

1. SMT performs superior to NMT on our low-resource
multimodal setting

2. SMT learns meaningful units from image concepts

3. Future directions: multimodal word discovery beyond mixture
models; word discovery with raw audio and image



Thank you ! The code will be available at
https://github.com/lwang114/MultimodalWordDiscovery
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