A Translation Framework for Multimodal Spoken Units Discovery

Liming Wang, Mark Hasegawa-Johnson

University of Illinois at Urbana-Champaign

Asilomar 2021

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Overview

Motivation

Multimodal word discovery (MWD) What is MWD? A Translation Model for MWD

From MWD to Multimodal Phoneme Discovery (MPD) A Translation + Compression Model for MPD

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Machine vs Human in Learning Speech

Machine:

- Needs large amount of transcribed speech more than 99% of world's languages have
- Does not transfer well across different domains
- Learns from only speech and text

- Human:
 - Needs only noisy, untranscribed speech for training
 - Generalizes well
 - Learns from a wide range of information sources besides speech

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Overview

Motivation

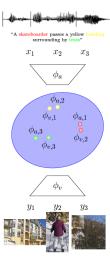
Multimodal word discovery (MWD) What is MWD? A Translation Model for MWD

From MWD to Multimodal Phoneme Discovery (MPD) A Translation + Compression Model for MPD

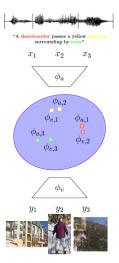
Multimodal Word Discovery (MWD): Learn to listen by looking

 Discover word-like units by associating the visual objects with visual words in the speech

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

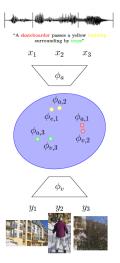


^arecall at 10 for speech-to-image retrieval ^brecall at 10 for image-to-speech retrieval



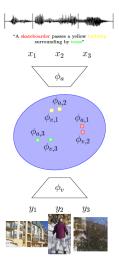
Mismatch of objective: Perform well in retrieval, but badly in word discovery

^arecall at 10 for speech-to-image retrieval ^brecall at 10 for image-to-speech retrieval



- Mismatch of objective: Perform well in retrieval, but badly in word discovery
- ► Under-constrained: Learning good sentence embedding ≠ learning good word embedding

^arecall at 10 for speech-to-image retrieval ^brecall at 10 for image-to-speech retrieval



- Mismatch of objective: Perform well in retrieval, but badly in word discovery
- ► Under-constrained: Learning good sentence embedding ≠ learning good word embedding
- Results on SpeechCOCO (Havard et al. 2017):

	S2I@10 ^a	I2S@10 ^b	Alignment F1
(Harwath et al. 2018)	57	59	37
Random	1	1	20

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

^arecall at 10 for speech-to-image retrieval ^brecall at 10 for image-to-speech retrieval

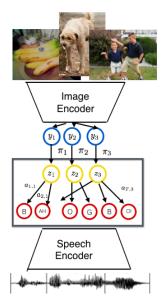
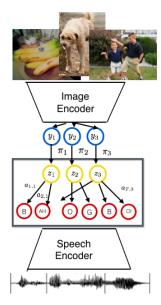


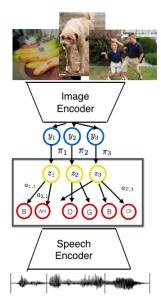
 Image Encoder: maps ROIs to visual concept probabilities

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00



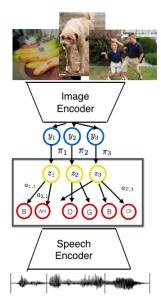
- Image Encoder: maps ROIs to visual concept probabilities
- Speech Encoder: maps spoken segments to phone probabilities

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



- Image Encoder: maps ROIs to visual concept probabilities
- Speech Encoder: maps spoken segments to phone probabilities
- Hidden Markov Model Aligner. Learn the alignment from the phone and concept probability vectors

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



- Image Encoder: maps ROIs to visual concept probabilities
- Speech Encoder: maps spoken segments to phone probabilities
- Hidden Markov Model Aligner. Learn the alignment from the phone and concept probability vectors
- Training objective: maximum likelihood with expectation maximization algorithm

Evaluation Metrics

- Alignment F1: Harmonic mean between the alignment recall and precision:
 - Alignment recall: the average probability that a word is aligned correctly over each true position
 - Alignment precision: the average probability that a word is aligned correctly given each predicted position

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Retrieval Recall@1, 5, 10: The empirical probability that the model retrieves a matching image/caption after 1, 5, 10 trials respectively

Experimental Results

	S2I @1	@5	@10	l2S @1	@5	@10
Cosine+TDNN (Harwath et al. 2018)	12	38	57	12	41	59
SMT	3	13	20	0.1	0.5	1
SMT (phones)	7	24	36	4	16	28

Table: Speech-to-image (S2I) and image-to-speech (I2S) retrieval performance of various systems on SpeechCOCO

	Alignment Recall	Alignment Precision	Alignment F1
Cosine+TDNN	54.9	27.8	36.9
SMT	60	30	40

Table: Word discovery performance of various systems on SpeechCOCO; Results are evaluated only with words that describe one of the 80 concepts

Visualization of Discovered Words

(a) audio-level cosine+TDNN

(b) audio-level SMT

(c) phone-level SMT

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure: Word discovery results of different systems on the image-caption pair "a woman eating a piece of pastry in a market area." The texts are not available in the first two figures during training and are shown for ease of understanding.

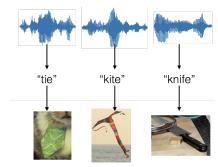
Overview

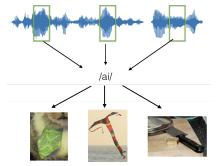
Motivation

Multimodal word discovery (MWD) What is MWD? A Translation Model for MWD

From MWD to Multimodal Phoneme Discovery (MPD) A Translation + Compression Model for MPD

From MWD to Multimodal Phoneme Discovery (MPD)





Word:

- Unit most directly related to meaning
- Large vocabulary size, large sample complexity
- Unreliable for understanding unseen words, not universal across languages

Phoneme:

- Smallest meaning-preserving unit
- Low vocabulary size, relatively low sample complexity

 Shared among words, more universal across languages

Acoustic Units (AU) as Information Bottleneck (IB)

The information bottleneck objective (Tishby et. al., 1999): For Markov chain Z – X – Y, Z is an information bottleneck of (X, Y) if (P^{*}_{Z|X}, P^{*}_{Y|Z}) is the optimal solution of

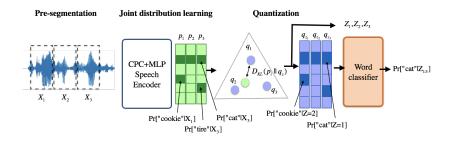
$$\max_{\substack{P_{Z|X}, P_{Y|Z} \\ s.t.}} I(Z; Y)$$

MAUD as special cases of IB:

► $X = [X_1, \dots, X_T]$ is the sequence of spoken segments, $Y \in \mathcal{Y}$ is the visual word and $Z = [Z_1, \dots, Z_T] \in \{1, \dots, K\}^T$ is the AU sequence represented by X.

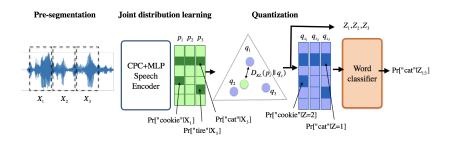
- MWD: T is the number of words, $I_0 \approx H(Word) \times T$
- MPD: T is the number of phonemes, $I_0 \approx H(\text{Phoneme}) \times T$

Information Quantizer (IQ): A Translation + Compression model for MPD



Pre-segmentation: Either use an algorithm based contrastive predictive coding (CPC) representation (Kreuk et al. 2020), or simply use framewise representation from a convolutional neural net (CNN)

A Translation + Compression Model for MPD

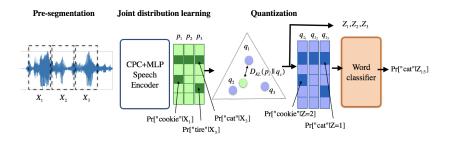


Joint distribution learning objective:
P^θ_{Y=y|X=x} := Pr[Y = y|X = x] is learned by a multilayer perceptron (MLP); q(·): Δ^{|𝒴|} → {q₁, · · · , q_K} ⊂ Δ^{|𝒴|} is some quantizer on the probability simplex

$$\min_{\theta,q(\cdot)} \sum_{i=1}^{n} \log q_{y_i}(P_{Y|X=x_i}^{\theta}) \quad (\text{with ST}^1) \quad \text{or} \quad \sum_{i=1}^{n} \log P_{Y|X}^{\theta}(y_i|x_i) \quad (\text{w/o ST})$$

¹Straight-through gradient

A Translation + Compression Model for MPD



Quantization (IB) learning objective:

$$\min_{\theta,q(\cdot)}\sum_{i=1}^{n}D_{\mathcal{KL}}(\mathrm{sg}[P_{Y|X=x_{i}}^{\theta}]||q(P_{Y|X=x_{i}}^{\theta}))+D_{\mathcal{KL}}(P_{Y|X=x_{i}}^{\theta}||\mathrm{sg}[q(P_{Y|X=x_{i}}^{\theta})])$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

¹sg[·]: Stop-gradient operator

Datasets

Visual-word only datasets: Created by cutting out visually salient noun segments from the utterances using forced alignments

- Flickr audio [Harwath & Glass 2015]:
 - ► Visual words extracted from Flickr30kEntities with frequency at least 50 (|𝒴| = 258) over the whole dataset
 - Training: 23741 words
 - Test: 2491 words
- LibriSpeech:
 - Same set of visual words as Flickr audio
 - Training: 42015 words from train-clean-100 and train-clean-360
 - Test: 595 words from dev-clean

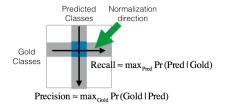
Whole-sentence dataset:

- Training: LibriSpeech with three subsets of words:
 - ▶ Visual words: same set as Flickr, $|\mathcal{Y}| = 224$
 - ▶ Visual words + top-300 words: $|\mathcal{Y}| = 524$
 - ▶ Visual words + top-600 most frequent words: $|\mathcal{Y}| = 824$
- **TIMIT**: the whole dataset excluding SA utterances, 5040 utterances

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Evaluation Metrics

- Token F1: Harmonic mean between token recall and precision
 - Token recall: the average probability of the most likely cluster over each phoneme
 - Token precision: the average probability that the most likely phoneme over each cluster



 Normalized Mutual Information (NMI): Computed using the empirical joint distribution between the predicted (clusters) and gold classes (phonemes) as

$$NMI := \frac{I(\mathsf{Pred}, \mathsf{Gold})}{\mathsf{avg}(H(\mathsf{Pred}, H(\mathsf{Gold})))}$$

Boundary F1: between each predicted phoneme boundary times and the gold boundary times with a tolerance of 20ms

Phoneme Discovery Results: Visual Word-only Datasets

Flickr Audio Word	Token Precision	Recall	F1
Continuous rep	presentation		
$CPC{+}k{-}means$ (Nguyen et al. 2020) k-means	31.3 31.6	39.8 43.5	35.1 36.6
Discrete representation			
Gumbel VIB (Alemi et al. 2017)	34.2	51.6	41.1
DIB (Strouse et al. 2016)	51.1	42.9	46.6
IQ (Ours), K=44	55.4	50.5	52.9
IQ (Ours), K=100	61.2	42.3	50.0
IQ (Ours), K=256	60.8	40.0	48.3

Table: Phoneme discovery results on isolated visual words from Flickr Audio. The baseline results are obtained with K = 44. All results use gold segmentation.

LibriSpeech Word	Token Precision	Recall	F1
Continuous representation			
CPC+k-means (Nguyen et al. 2020)	41.1	55.5	47.2
k-means	57.5	49.4	53.1
Discrete representation			
Gumbel VIB (Alemi et al. 2017)	39.9	65.1	49.5
DIB (Strouse et al. 2016)	61.8	61.2	61.6
IQ (Ours), K=39	62.2	63.1	62.6

Table: Phoneme discovery results on LibriSpeech visual words with ground-truth segment boundary. The baseline results are obtained with K = 39. All results use gold segmentation.

・ロト・日本・日本・日本・日本・日本

Phoneme Discovery Results: Whole-sentence Dataset

TIMIT	Token F1	NMI	Boundary F1
(Harwath et. al. 2020)	-	35.9	54.2
(Yusuf et. al. 2020)	-	40.1 ± 0.1	76.6 ± 0.5
(Feng et. al. 2021, GP only, K=50)	-	36.8	70.5
+ gold segmentation	-	51.2	97.8
+ gold segmentation, K=39	-	50.4	97.1
(Ours) IQ, Y =224, K=39	37.9±1.2	38.6±0.7	77.1±0.1
+ training on TIMIT	39.3	39.2	77.2
+ gold segmentation	51.8	59.8	98.0
(Ours) IQ, <i>Y</i> =524, K=39	42.4±0.1	43±0.5	79.4±0.1
+ training on TIMIT	45.7	44.3	79.1
+ gold segmentation	55.7	61.6	98.0
(Ours) IQ, <i>Y</i> =824, K=39	43.9±0.1	44.3±0.2	79.2±0.0
+ training on TIMIT	46.0	45.2	79.1
+ gold segmentation	55.3	63.4	98.0

Table: Phoneme discovery results on TIMIT

- More vocab helps
- Training on TIMIT helps
- Large (19%) gap between using or not using gold segmentation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Visualization of Discovered Phonemes

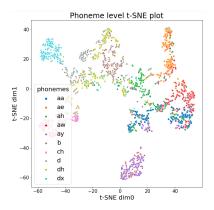


Figure: t-SNE plots of phoneme clusters discovered by IQ with gold segmentation on TIMIT

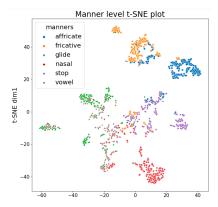


Figure: Manner-level t-SNE plots of phoneme clusters discovered by IQ with gold segmentation on TIMIT

Codeword Distribution of Predicted Phonemes

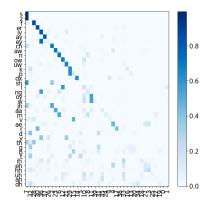


Figure: Codeword distribution of phoneme clusters discovered by IQ with gold segmentation on TIMIT

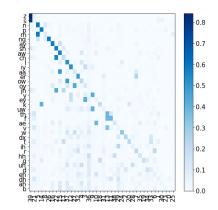


Figure: Codeword distrbution of phoneme clusters discovered by IQ with predicted segmentation on TIMIT

Confusion between Phonemes: Gold Segmentation Case

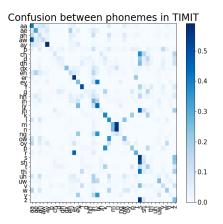


Figure: Confusion matrix of phonemes by IQ with gold segmentation on TIMIT

Phoneme Pair	Error Prob.
ae, aa	1.00
ch, ah	0.85
sh, s	0.82
ah, aa	0.82
aw, aa	0.77
Z, S	0.75
n, m	0.73
p, k	0.70
r, er	0.67
iy, ey	0.60

Table: Top-10 most confusing phoneme pairs by IQ with gold segmentation on TIMIT

Confusion between Phonemes: Predicted Segmentation Case



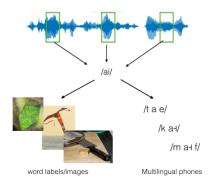
Figure: Confusion matrix of phonemes by IQ with predicted segmentation on TIMIT

Phoneme Pair	Error Prob.
ae, aa	1.00
ah, aa	0.81
Z, S	0.78
aw, aa	0.72
ау, аа	0.54
n, m	0.49
sh, s	0.48
iy, ey	0.45
dh, ah	0.42
ch, ah	0.41

Table: Top-10 most confusing phoneme pairs by IQ with predicted segmentation on TIMIT

Conclusion and Current Work

- Translation and compression are useful metaphors for exploiting multi-modal information in speech technology
- Current work: incorporate multilingual information into the IB framework; apply the model to a low-resource language called Mboshi



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Further Reading

- [Wang et al, 2021] Align or Attend? Toward More Efficient and Accurate Spoken Word Discovery using Speech-to-image Retrieval. Liming Wang, Xinsheng Wang, Mark Hasegawa-Johnson, Odette Scharenborg, Najim Dehak. ICASSP 2021.
- [Wang and Hasegawa-Johnson, 2020] A DNN-HMM-DNN Hybrid Model for Discovering Word-like Units from Spoken Captions and Image Regions.
 Liming Wang, Mark Hasegawa-Johnson.
 Interspeech 2020.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00